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Abstract.  In this paper we introduce wavelet video processing of proximity sensor signals.  Proximity sensing is 
required for a wide range of military and commercial applications, including weapon fuzing, robotics, and 
automotive collision avoidance.  While our proposed method temporarily increases signal dimension, it 
eventually performs data compression through the extraction of salient signal features.  This data compression 
in turn reduces the necessary complexity of the remaining computational processing.  We demonstrate our 
method of wavelet video processing via the proximity sensing of nearby objects through their Doppler shift.  In 
doing this we perform a continuous wavelet transform on the Doppler signal, after subjecting it to a time varying 
window.  We then extract signal features from the resulting wavelet video, which we use as input to pattern 
recognition neural networks.  The networks are trained to estimate the time varying Doppler shift from the 
extracted features.  We test the estimation performance of the networks, using different degrees of nonlinearity 
in the frequency shift over time and different levels of noise.  We give the analytical result that the signal-to-noise 
enhancement of our proposed method is at least as good the square root of the number of video frames, 
although more work is needed to completely quantify this.  Real-time wavelet based video processing and 
compression technology recently developed under the DoD WaveNet program offers an exciting opportunity to 
more fully investigate our proposed method.  
 
 
1  Introduction 
 

Proximity sensing involves detecting the presence of nearby objects in a system’s environment.  In radar or 
sonar sensors, this includes not only the transducing of electromagnetic or acoustic energy to electrical signals, but 
also the processing of these signals in order to extract useful information.  The sensor signals may also be images, 
for example those from synthetic aperture radar.  In such cases we can extract information in both space and time. 
 

In this paper we propose a novel wavelet video based method of processing proximity sensor signals.  In 
proximity sensing, interesting signal structures are usually localized.  Wavelet representations are therefore ideal, 
since they have both spatial and temporal localization.  The proximity-sensing problem could then be seen as the 
recognition of any patterns among the time varying wavelet transform coefficients of the sensor signal that may 
indicate the presence of objects. 
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 In our scheme we place a window of fixed width over the incoming signal, so as to localize the processing 
near the present time.  We then perform a continuous wavelet transform on the signal within the window, resulting 
in an image of the transform.  As the signal window then moves forward in time, the corresponding sequence of 
transform images forms a video.  From this wavelet transform video, we then extract features as input to pattern 
recognition algorithms such as artificial neural networks. 
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Fig. 1  Generation of wavelet transform video from time varying proximity sensor signal, to provide neural 
network features.  Temporary expansion of dimensionality allows us to extract salient features, leading to 
reduced computational complexity. 

 
The processing of video data in real time is considered to be somewhat impractical given the current state 

of technology.  As such the utilit y of such processing in real-world applications would seem to be limited.  
However, recent developments at Trident Systems, Incorporated have made available real-time wavelet processing 
of video, in the form of the WaveNet technology1.  Also, in the future a variety of fast architectures for computing 
wavelet transforms are likely to be developed. 

 
Besides, in our proposed scheme, wavelet processing is not a particular computational hindrance, but 

rather allows salient features to be extracted via the wavelet coefficients.  Because of the quality of the wavelet 
features, it is likely that fewer inputs are needed for pattern recognition.  In this sense our scheme could be 
considered to be a form a data compression.  In particular, it seems to be a form of data compression that is ideal 
for pattern recognition. 

 
The multiresolution nature of wavelets also allows us to explore the tolerance of imprecision in the 

processing of signals.  This provides the freedom to tailor the design of the sensor to the resolution requirements of 



the signals being processed.  This tolerance of imprecision is in the spirit of fuzzy logic, but in this case the 
imprecision is in the scale of the signal structures rather than in the membership of sets. 

 
The important idea is that useful information in signals is generally found at the larger scales (lower 

frequencies).  The less useful, smaller scale signal structures can therefore be disregarded.  Neglecting unnecessary 
details allows a reduction in the amount of data to be processed.  This in turn reduces the complexity of the 
processing, leading to improvements in processing time, system size, and system cost. 

 
This reduction of data through the explicit use of scale is a powerful form of data compression.  While 

there are several other strategies for data compression, this one has the advantage of being based on the extraction 
of signal features.  Through wavelet transform time integration, a single coefficient provides the correlation 
between the signal and a wavelet at a particular scale and time shift.  Wavelets are known to provide good signal 
features for pattern recognition algorithms such as artificial neural networks.  Indeed, natural sensors such as eyes 
and ears carry out wavelet-type processing. 

 
The continuous wavelet transform effectively increases the dimensionality of the signal representation 

from one to two.  While this might cause some concern at first glance, it is really not a problem.  The reason is 
that the wavelet representation will be used to extract signal features only.  Thus the pattern recognition neural 
networks need not suffer from the “curse of dimensionality.”  After all, the extracted features are of a single 
dimension only, so that the increase in dimensionality is only temporary.  Indeed, because of the high quality of 
wavelet features, it is quite possible that fewer features will be needed, and that recognition performance will be 
improved. 
 

Many systems have the need to sense the proximity of objects in their environment.  For example, one of 
the first applications of radar was as a proximity sensor for military fuzes2. Proximity sensing is also widely 
applied in manufacturing automation and robotics.  More recently, there has also been a strong interest in 
proximity sensing for automobile collision avoidance. 
 
 

(a) (b) (c)
 

 
Fig. 2  Example applications of proximity sensing: (a) detection of targets for military fuzing, (b) manufacturing 
automation and robotics, and (c) automobile collision avoidance.  

 
In the next section, we introduce an important type of signal for proximity sensing, namely, the Doppler 

signal.  We go on to describe how the Doppler signal can be used to detect the presence of nearby objects.  In 
Section 3, we show the continuous wavelet transform representation of sensor signals, and contrast it with other 
wavelet and Fourier representations.  We also show how fast wavelet denoising algorithms can dramatically 
improve signal quality, which leads to enhanced recognition performance.  Then, in Section 4 we demonstrate how 



features extracted from wavelet-generated video can be used along with neural networks to improve proximity 
sensing.  Finally, in Section 5 we summarize our work and draw conclusions. 
 
 
2  Doppler Signals for Proximity Sensing 
 

Active proximity sensors such as radar, acoustic, and ladar detect objects by first emitting energy waves, 
then receiving the signal from the reflected waves.  These sensors can then process the echo signal in order to gain 
information about the objects.  An important type of information for such sensors is the change in frequency of the 
echo signal relative to the emitted signal.  The frequency shift is proportional to the relative velocity between the 
object and the sensor.  This is the well-known Doppler effect.  A familiar example of the Doppler effect is the 
noticeable change in whistle pitch as a train passes by. 
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Fig. 3  Doppler effect: (a) Doppler induced change in frequency between transmitted and reflected signals for 
active sensors, and (b) familiar example of Doppler effect is change in pitch as train passes by. 
 
 
2.1  The Doppler Shift and Its Relation to Relative Velocity 
 
 It is well known in electromagnetics, acoustics, and optics that if either the source or observer of an 
oscillating wave is in motion, the oscillation frequency appears to shift.  This shift is the Doppler effect.  In the 
case of proximity sensing, the source and observer are both located in the sensor.  The Doppler effect then arises 
from the relative motion between the sensor and the sensed object. 
 

Let us derive the Doppler frequency shift and the corresponding relative velocity between sensor and 
object.  Assume that the distance between the sensor and object is R .  The total number of radiation wavelengths 
λ  over the transmitted and reflected paths is then λ/2R .  Since one wavelength λ  corresponds to an angular 
phase of π2 , the total phase φ  is λπ /4 R .  The rate of change in φ  with time t  is the angular Doppler 

frequency dω , which is then 
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Here df  is the Doppler frequency shift and rv  is the relative velocity of the object with respect to the sensor.  The 

Doppler frequency shift df  then becomes 
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where 0f  is the transmitted frequency and c  is the velocity of radiation propagation.  The relative velocity rv  

corresponding to this frequency shift is then 
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Thus we can calculate the relative velocity rv  between the sensor and an object from measurements of the 

Doppler frequency shift df . 

 
 
2.2  Direction to Sensed Object from Doppler Shift 
 
 We can also calculate the direction to the object from measurements of the Doppler frequency shift.  
Figure 4 shows a sensor and an object to be sensed.  We assume they are approaching at a constant velocity v

�

, 
with the origin fixed at the sensor.  The relative velocity rv  can be written as 
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where θ  is the angle toward the object.  The angle θ  is then calculated as 
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This calculation requires a value of the magnitude vv
�

=  of the approach velocity v
�

, which can be estimated by 

measuring the relative velocity rv  at a distance sufficiently larger than the closest approach distance α .  In fact, 

if we have reliable measurements of v  and the time of closest approach between sensor and object, we can 
calculate α  as 
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with 0=t  at the time of closest approach. 
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Fig. 4  Geometry for sensor and object over time. 
 
 
2.3  Utility of Doppler Shift in Proximity Sensing 
 
 While the kinematics we just described are somewhat idealized, the general behavior does hold true in 
most cases.  At sufficiently large distances between the sensor and an object, both the relative velocity and the 
corresponding Doppler frequency shift asymptotically approach a constant.  As the object later passes near the 
sensor, the relative velocity decreases, with the frequency shift decreasing proportionately.  The nearer the object 
passes the sensor, the more nonlinear is the change in Doppler frequency shift over time.  This general behavior is 
shown in Figure 5. 
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Fig. 5  Change in Doppler frequency over time as an object passes near proximity sensor.  
 

Proximity sensors can take advantage of this behavior in order to gain information about sensed objects.  
For example, the approach of Doppler frequency shift to zero indicates that the object is at its closest distance 
from the sensor.  Another example can be taken from the military weapon fuzing problem.  Here the optimal value 
of θ  for fuzing is known to be 
 



( )vv /tan frag
1−=θ ,            (7) 

 
where fragv  is the velocity of the warhead fragments.  Note that this is independent of the closest app roach distance 

α .  The fuzing problem is then to estimate the Doppler shift over time, and to detonate when the shift reaches its 
optimal value. 
 
 
3  Wavelet Representation and Denoising of Doppler Signals 
 
 The Fourier transform is the cornerstone of signal processing.  However, since it lacks time localization, it 
is less suited to the processing of signals whose frequencies change over time.  The time-dependent (or windowed) 
Fourier transform localizes time by doing the transform over a window, which shifts in time.  Unfortunately, the 
width of the window is fixed over the entire transform, which causes problems in the high-frequency limit3. 
 

In contrast, a wavelet transform has a window whose bandwidth varies in proportion to the center 
frequency of the wavelet.  This is the so-called constant-Q property from electrical engineering.  The result is that 
the wavelet transform performs time-scale processing rather than time-frequency processing.  Also, wavelet 
transforms allow more freedom in the choice of basis, so that the basis functions can be better matched to the 
shape of the signal. 

 
The wavelet transform provides the local scale of the signal over time, which for Doppler signals is the 

local period or inverse of frequency.  Wavelet representations of the Doppler signal are particularly necessary in 
the case of closely passing objects, for which the change in frequency is more abrupt.  These representations are 
also convenient when the signal is embedded in nonstationary noise. 
 

In the remainder of this section, we first explain the advantages of the continuous wavelet transform over 
the discrete transform for pattern recognition problems.  We then formally introduce the continuous wavelet 
transform, and show how it generates a two-dimensional representation (image) for proximity sensing Doppler 
signals.  We perform the transform with the real-valued Morlet wavelet4, which is well matched to the Doppler 
signals of interest.  We also contrast this transform to the time-dependent Fourier transform with a Gabor 
window5.  To improve performance for noisy signals, we apply a fast wavelet-based denoising algorithm. 
 
 
3.1  Advantages of Continuous Wavelet Transform for Pattern Recognition 
 

Mallat’s multiresolution analysis6 leads to discrete orthogonal wavelets at dyadic scales and shifts, 
implemented via the efficient pyramid algorithm.  These discrete wavelets have been successful in many 
applications, particularly data compression.  However, discrete wavelets have limited utilit y for pattern recognition 
problems.  This is because interesting signal structures are not constrained to follow such power-of-two patterns.  
In particular, discrete wavelet transform coefficients are shift-variant, which in general causes problems for 
pattern recognition. 

 
In contrast, the continuous wavelet transform has coefficients at all scales and shifts, not just dyadic ones.  

The continuous transform therefore has the desirable property of shift invariance.  Another advantage of 
continuous wavelets is that they have less stringent requirements for admissibility , which allows a wider choice of 
basis functions.  They also have the possibilit y of being basis functions for adaptive wavelet networks. 

 



Through the inclusion of all scales and shifts, the continuous wavelet transform effectively increases the 
dimensionality of the signal representation.  That is, the representation is made to be a function of two variables 
rather than one.  We note that the discrete wavelet transform introduces no such increase in dimensionality, since 
the number of transform coefficients is the same as the number of signal sample points.  This is because the 
discrete wavelet transform employs an orthonormal basis rather than an overcomplete frame. 

 
However, the fact that we are using the continuous wavelet transform coefficients merely for feature 

extraction means that we need not be plagued by the curse of increased dimensionality.  In particular, the goal is to 
use only the relatively few coefficients that provide the best features.  In fact, the use of such high quality features 
may well mean that fewer inputs are ultimately needed for pattern recognition.  Of course, these high quality 
features are also likely to improve the performance of the neural networks.  In this sense, the temporary increase in 
dimensionality could actually improve compression quality, at least when measured with respect to recognition 
performance. 

 
If we disregard the issue of dimensionality, it might still be argued that computation of the discrete wavelet 

transform is faster, which has complexity ( )nO .  However, a continuous wavelet transform implemented via the 

fast Fourier transform has complexity ( )nnO log , which is still quite acceptable for many applications.  Also, a 

continuous wavelet transform has the potential for massive parallelism. 
 
 
3.2  Continuous Wavelet Transform and Contrast to Gabor Transform 
 
 The continuous wavelet transform4 ( )baFw ,  of a signal ( )tf  is given by 
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Here a  and b  are scale and shift parameters, respectively.  A necessary and sufficient condition for Eq. (8) to be 
invertible is that ( )tψ  satisfies the wavelet admissibilit y condition 
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where ( )ωΨ  is the Fourier transform of ( )tψ .  If ( )tψ  has reasonable smoothness and decay at infinity, which is 

usually the case, the admissibilit y condition can be written as 
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Under certain conditions, it is possible to reconstruct ( )tf  from samples of ( )baFw ,  taken on a hyperbolic 

lattice.  The collection of wavelet functions ( )a
bt−ψ  over this lattice is then said to constitute a frame.  A frame, in 

contrast to a basis, is an overcomplete set.  This redundant representation allows more flexibilit y in the choice of 
inputs to pattern recognition neural networks.  In particular, we are not constrained to the power-of-two scales 
characteristic of the discrete wavelet transform. 
 



We choose for ( )tψ  the real part of the Morlet wavelet7, which is 

 

( ) ( ) ( ) 2/
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2/ 22
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with 336.52ln/20 == πω , which is a standard value.  The real Morlet wavelet is a Gaussian-modulated 

sinusoid, which is well suited to processing sinusoidal Doppler signals.  The wavelet transform with the real 
Morlet is similar to the time-dependent cosine Fourier transform with a Gabor3 (Gaussian-shaped) window.  This 
type of Fourier transform is also called the Gabor transform, and is given by 
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For comparison, we can write the wavelet transform in Eq. (8) as 
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where a/0ωω =′ .  For the Gabor transform in Eq. (12), the width of the window GW , given by 
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remains fixed.  However, for the wavelet transform in Eq. (13) the window width WW , given by 
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varies inversely with the frequency a/0ωω =′ .  Thus the frequency bandwidth of the wavelet window varies in 

proportion to ω′ , through the inverse scaling property of Fourier conjugate variables.  Also, the cosine term 
( )[ ]bt −′ωcos  for the wavelet transform shifts in time along with the window, through the shift parameter b .  In 

contrast, for the Gabor transform only the window shifts in time, and the cosine term remains fixed. 
 
 
3.3  Fast Wavelet Denoising 
 
 To improve performance for noisy Doppler signals, we apply Donoho’s ( )nO  wavelet denoising 

algorithm8.  The algorithm first does the discrete wavelet transform with Mallat’s pyramid algorithm6.  The 
pyramid algorithm computes the transform for some J  dyadic levels of scale, resulting in vectors of detail and 
smooth wavelet coefficients JJJ sdddd ,,,,, 121 −� .  The algorithm then shrinks the detail coefficients for scales 
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where )(xλσδ  is a nonlinear threshold shrinkage function given by 
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This threshold shrinkage function is shown in Figure 6. 
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Fig. 6  Nonlinear threshold shrinkage function for wavelet denoising. 
 

The threshold shrinkage function )(xλσδ  is parameterized by a threshold λ  and an estimate of the 

standard deviation of the noise σ .  We use a universal threshold8 )log(2 Nj =λ , where N  is the number of 

data samples.  For σ  we use the median absolute deviation, which is a robust estimation of standard deviation.  
Finally, the denoising algorithm computes the inverse discrete wavelet transform using the new coefficients 

JJJ sddd ,,
~

,,
~

11 −� .  This results in a non -parametric estimate of the signal without the noise.  The entire wavelet 

denoising algorithm is shown in Figure 7. 
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Fig. 7  Wavelet denoising algorithm. 
 



For the discrete wavelet transform in the denoising algorithm, we apply a super-Haar wavelet9, which is a 
linear superposition of shifted Haar wavelets.  The super-Haar scaling function ( )tφ  is given by 

 

( ) ( )∑ −=
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Hk ktst φφ ,           (18) 

 
 where ks  are integer coefficients and ( )tHφ  is the Haar scaling function10, given by 
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We apply the particular super-Haar in which [ ]1,2,2,1=ks . 

 
 
3.4  Simulations 
 

Figure 8 shows pure, noisy, and denoised versions of a simulated Doppler signal.  The closest-approach 
distance α  is such that the change in frequency is nearly linear over time.  We assume that the sinusoid amplitude 
is constant over time, which is appropriate over the short distances applicable to proximity sensing. 
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Fig. 8  Doppler signals: (a) pure, (b) noisy, and (c) denoised. 

 
Figure 9 shows the continuous wavelet transforms of the three signals in Figure 8.  Figure 10 shows the 

same three transforms, using a surface plot rather than a grayscale image.  The wavelet transforms show the 
increase in local signal scale over time.  In this case the increasing signal scale is the increasing period of the 
frequency-modulated sinusoid. 
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Fig. 9  Continuous wavelet transforms (grayscale image): (a) pure, (b) noisy, and (c) denoised signals. 
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Fig. 10  Continuous wavelet transforms (surface plots): (a) pure, (b) noisy, and (c) denoised signals. 
 

The time-scale structure of the Doppler signal is visually apparent to some extent in the transform of the 
noisy signal.  However, if samples of the noisy transform were used as neural network inputs for proximity 
sensing, the high-frequency fluctuations would result in poor performance.  These fluctuations are largely removed 
by the wavelet denoising, which will result in much improved performance. 
 
 

4.  Proximity Detection with Wavelet Video Features and Neural Networks 
 
 The continuous wavelet transform correlates a Doppler signal with time-localized wavelets at various 
scales and shifts.  It gives the change in local signal scale over time, which in this case is the Doppler period or 
inverse frequency.  When a moving window is placed on the incoming Doppler signal and the windowed signal is 
wavelet transformed, the corresponding time-varying transform imagery constitutes video.  Samples of this 
wavelet-generated video over time then form signal features for pattern recognition neural networks.  These 
networks are then trained to extract the Doppler frequency shift over time.  This frequency shift is critical 
information for proximity sensing. 
 



The continuous wavelet transform constitutes a frame rather than a basis.  Such a redundant 
representation allows more flexibilit y in the selection of signal features.  In terms of the most efficient signal 
representation, these features should be orthogonal.  However, such a representation in which the features are 
completely independent is less robust with respect to noise immunity and fault tolerance.  The search for the best 
representation is therefore a tradeoff between redundancy and robustness11. 
 

We extract the Doppler shift with feedforward multilayer neural networks, known as multilayer 
perceptrons12.  After computing the continuous wavelet transform of the denoised Doppler signal, we sample the 
transform coefficients to provide inputs for the multilayer perceptrons.  The networks are trained with the 
Levenberg-Marquardt rule13 to provide the Doppler shift at a given time.  This rule is a powerful generalization of 
gradient descent that employs an approximation of Newton’s method.  It is much faster than standard gradient 
descent algorithms such as backpropagation, although it does require more memory. 

 
In the remainder of this section, we first describe the architecture and training algorithm we employ for the 

pattern recognition neural networks.  We then show simulations that demonstrate the improvement offered by 
signal features taken from wavelet-generated video.  Finally, using wavelet-generated video features, we show 
pattern recognition performance for the estimation of time-varying Doppler shift.  We show this performance for 
different degrees of nonlinearity in the shift over time, as well as performance for different levels of noise. 
 
 
4.1  Architecture and Training for Pattern Recognition Neural Networks 
 

Figure 11 shows the neural network architecture we employ for Doppler frequency estimation.  The 
network is comprised of 3 layers of artificial neurons: an input layer, a middle or hidden layer, and an output layer.  
Signals flow forward through the network, that is, from input layer to hidden layer to output layer.  This 
architecture is known as a multilayer feedforward network, or multilayer perceptron. 
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Fig. 11  Neural network architecture for proximity sensing pattern recognition. 
 

The input neuron layer in Figure 11 performs no processing; it merely provides means for coupling the 
input vectors to the hidden layer.  The neurons in the middle layer sum the weighted network inputs, along with an 
internal bias for each neuron, then apply the nonlinear sigmoidal activation function 
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where jv  is the weighted sum for neuron j .  This sigmoidal nonlinearity limits the neuron outputs to (-1,1).  The 

single output neuron computes the weighted sum of the outputs of the hidden neurons, along with its internal bias, 
without applying the sigmoidal function. 
 

The architecture in Figure 11 is known to be a universal function approximator12, that is it can represent 
an arbitrary function arbitrarily well, given a sufficient number of neurons in the hidden layer.  The particular 
function mapping that the network performs is determined by the values of the weights between neuron layers and 
the internal neuron biases. 
 
 Various learning algorithms exist for computing the network weights and biases for a given problem.  The 
most popular learning algorithm is backward error propagation12, which attempts to minimize the squared error of 
the network through gradient descent in weight space.  We can define the error signal for neuron j  as 

 
( ) ( ) ( )nyndne jjj −= ,         (21) 

 
where n  indexes the training vectors, ( )nd j  is the desired response for neuron j , and ( )ny j  is the actual output 

of neuron j .  The instantaneous value of the sum of squared errors ( )nej
2

2

1
 over all neurons in the output layer 

of the network can then be written as 
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where the set C  includes all neurons in the output layer and N  is the number of vectors in the training set.  The 
squared error averaged over all training vectors is then 
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The average squared error avE  constitutes a cost function that is to be minimized.  It is minimized approximately 

by iteratively reducing ( )nE  for each training vector.  The correction ( )nwji∆  to be applied to weight ( )nwji  is 

then defined by the delta rule 
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where η   is a parameter that determines the rate of learning.  The minus sign in Eq. (24) results in gradient 

descent in weight space, that is weights are moved in the opposite direction of the error gradient. 
 



We apply a powerful generalization of backward error propagation known as the Levenberg-Marquardt 
weight update rule13.  This rule can be written in matrix notation as 

 

( ) eJIJJW T1T −
+=∆ µ ,        (25) 

 
where W∆  is the matrix of weight updates, e  is the error vector, and J  is the Jacobian matrix of derivatives of 
each error to each weight.  If the parameter µ  is very large, Eq. (23) approximates gradient descent, while if µ  is 

small it becomes the Gauss-Newton method. 
 

The Gauss-Newton method is faster and more accurate near an error minimum.  The idea is therefore to 
shift towards Gauss-Newton as quickly as possible.  The parameter µ  is thus decreased after each successful 

step, and increased only when a step increases the error.  The Levenberg-Marquardt update rule is known to train 
networks much more quickly than standard backward error propagation.  However, it does require more memory, 
usually a factor of NC*  more, where C  is the number of output neurons and N  is the number of training 
vectors. 
 
 
4.2  Signal Features from Wavelet-Generated Video 
 
 We now demonstrate the improvement in pattern recognition performance that wavelet-generated video 
features can provide.  We begin by showing how wavelet transform features outperform both time-domain and 
frequency-domain ones for classifying signals according to frequency.  In particular, we test the abilit y of pattern 
recognition neural networks to classify signals as either being either above or below a certain threshold frequency, 
in the presence of noise. 
 
 Figure 12 shows pattern recognition performance using 3 different signal representations for neural 
network input: wavelet transform coefficients, time-domain samples, and Fourier transform coefficients.  A variety 
of frequencies were used for the test signals, equally distributed about the threshold frequency.  The networks were 
trained to determine whether the signal frequencies were below (output of zero) or above (output of one) the 
threshold.  Because of the binary nature of this experiment, the networks were made to have sigmoidal rather than 
linear activation functions.  The noise was white Gaussian, with signal-to-noise ratio of  –1 dB. 
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Fig. 12  Frequency classification performance using (a) wavelet, (b) time-domain, and (c) frequency-domain 
features. 
 



 We see from Figure 12 that classification performance for wavelet features is better than for either time-
domain or frequency-domain features.  In particular, for the time-domain features there are many 
misclassifications at the lowest frequencies, and at frequencies just above the threshold.  Also, for the frequency-
domain features there are many misclassifications near the threshold. 
 
 If we look more carefully at Figure 12, we see that at the highest frequencies, and at frequencies just below 
the threshold, performance is slightly better for time-domain features than for wavelet features.  Also, at the lowest 
and highest frequencies, performance is slightly better for frequency-domain features than for wavelet features.  
Interestingly, it appears that the wavelet transform has formed a compromise between the time and frequency 
domains in which overall classification performance is improved. 
 
 Now that we have demonstrated the superior frequency classification performance of wavelet features, we 
can investigate which wavelet transform coefficients might provide the best features for estimating time varying 
Doppler shift.  One fundamental issue is whether to sample from a single time shift of the transform, or to sample 
over multiple shifts.  While sampling from a single shift completely localizes time, which is advantageous in some 
applications, sampling over multiple shifts gives additional information that may improve estimation performance.  
Also, sampling over multiple shifts provides a degree of redundancy that will likely improve performance for noisy 
signals. 
 
 As a test of single-shift versus multiple-shift features, we used each type of feature as input to a pattern 
recognition neural network.  For single-shift features, we used 32 samples of the continuous wavelet transform of 
the Doppler signal, taken over various scales at a single time shift.  For multiple-shift features, we used 16 
samples of the transform at the original time shift, and 16 more samples at an additional time shift of 6.  Figure 13 
shows the sampling scheme for the multiple-shift case. 
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Fig. 13  Samples of wavelet -generated video for inputs to pattern recognition neural networks. 
 

We trained the neural networks with samples of transforms of pure Doppler signals, sampling only every 
4th time shift of the transform.  For training outputs, we supplied the known instantaneous frequency of the pure 



signals for each time shift.  Thus the networks were trained to estimate the i nstantaneous frequency of the Doppler 
signals, given samples of their wavelet transform. 
 

After training for frequency estimation, we tested the networks with transforms of denoised versions of 
noisy Doppler signals. The networks were tested for every time shift of the transform, with a noise level of –2 dB.  
Figure 14 shows the test results.  It is obvious that performance is much better for the case of sampling wavelet 
coefficients over multiple time shifts. 
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Fig. 14  Estimation performance for time varying Doppler shift: (a) sampling at single scale of wavelet 
transform, and (b) sampling from wavelet generated video.  Smooth lines show true Doppler shift over time. 
 

We point out that sampling over multiple time shifts versus sampling at only a single shift constitutes true 
image sampling, since both scale and shift variables (two dimensions) are sampled.  When the Doppler signal 
window is then moved forward in time, we have sequence of images over time, that is, we have video.  In our 
simulations, we sample from this wavelet-generated video.  In particular, for each wavelet transform image in the 
sequence that forms video, the samples provide an estimate, via neural networks, of the instantaneous Doppler 
shift corresponding to the image. 
 
 
4.3  Performance for Time Varying Doppler Shift Estimation 
 
 We have just demonstrated the effectiveness of features extracted from wavelet-generated video.  We now 
test the pattern recognition performance of such features in the estimation of time varying Doppler shift from noisy 
sensor signals.  In particular, we sample the wavelet video as shown in Figure 13, use the samples as neural 
network inputs, and then train the networks to estimate the Doppler shift.  We test performance for different 
degrees of nonlinearity in the Doppler shift over time, as well as for different levels of noise. 
 
 Figure 15 shows network test results for various signal-to-noise ratios, where the Doppler signal 
frequency decreases nearly linearly over time, corresponding to a relatively large closest-approach distanceα . The 
networks were tested for every time shift of the wavelet transform.  Since the networks were trained with only 
every 4th sample, this shows their abilit y to generalize to other frequencies.  Network performance is relatively 
good, but degrades with decreasing signal-to-noise ratio as would be expected.  Figure 16 shows similar network 
performance for smaller α , which corresponds to a more pronounced nonlinearity in the frequency shift over time. 
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Fig. 15  Estimation of Doppler shift using features from wavelet-generated video and pattern recognition neural 
networks (nearly linear change in shift over time): (a) signal-to-noise ratio of –0.5 dB, (a) signal-to-noise ratio of 
–2 dB, (a) signal-to-noise ratio of –4 dB. 
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Fig. 16  Estimation of Doppler shift using features from wavelet-generated video and pattern recognition neural 
networks (nonlinear change in shift over time): (a) signal-to-noise ratio of –0.5 dB, (a) signal-to-noise ratio of –2 
dB, (a) signal-to-noise ratio of –4 dB. 
 
 Analytically, for a signal in which the frequency content is constant over time, and assuming white noise, 

the signal-to-noise enhancement of our proposed method of processing is a factor of N , where N  is the 
number of video frames.  However, in our experience, for signals with time varying frequency components, or 

when the noise is nonstationary, an improvement exceeding this N  can be expected.  A more detailed analysis is 
necessary to further quantify this. 
 
 

5  SUMMARY AND CONCLUSIONS 
 
 The value of this paper is to introduce the processing of proximity sensor signals through wavelet 
generated video.  While temporarily increasing signal dimension through a representation in both scale and shift, 
the method ultimately performs data compression through the extraction of signal features.  This reduction of data 
in turn reduces the overall computational complexity.  Moreover, existing hardware and software developed under 
the DoD WaveNet program can potentially provide a testbed in which to further evaluate this method.  Because of 
the many important military and commercial applications of proximity sensing, it is worthwhile to pursue this 
work. 
 
 We demonstrated our method of video processing by detecting the proximity of objects through their 
Doppler shift.  We placed a time varying window over the Doppler signal, then performed a continuous wavelet 
transform on the windowed signal.  We then extracted signal features from the resulting wavelet video, which we 



used as input to pattern recognition neural networks.  The networks were then trained to estimate the time varying 
Doppler shift from the extracted features. 
 
 We tested the estimation performance of the networks, for different degrees of nonlinearity in the 
frequency change over time, and for different levels of noise.  We gave analytical results indicating that the signal -
to-noise enhancement of our proposed method is better than the square root of the number of video frames, though 
more work is needed to completely quantify this.  Our main purpose at this point is to demonstrate the utilit y of 
using wavelets to reduce the computational complexity of video processing, as applied to proximity sensing. 
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